(二)数学
和其他文明古国注重实用性不同,古希腊非常重视数学的理论、研究。在雅典时期对数学作出突出贡献的主要有毕达哥拉斯(Pythagoras,约公元前570-前497)学派和智者学派。前者最著名的成就是对勾股定理(西方称毕达哥拉斯定理 )的证明和无理数根号2的发现;后者则提出了三个著名的几何作图难题,吸引了当时和后世无数的数学家为之苦心钻研,直到近代才证明出这些作图是不可能的。但数学家们在研究过程中却获得了不少理论成果,如发现了二次曲线和数学证明的穷竭法等。
古希腊数学的最高成就体现在亚历山大时期的欧几里德(Eulid,约公元前323-前 235)的不朽著作《几何原本》之中。该书把前人的数学成果用公理化方法加以系统的整理和总结,即从若干个简单的公理出发,以严密的演绎逻辑推导出467个定理,从而把初等几何学知识构成为一个完整的理论体系。《几何原本》为古希腊科学和后世西方学术的发展起了重要的示范作用。与欧几里得同时代的阿波罗尼(Apollonius,约公元前262-前190)所著《圆锥曲线》也是一部古希腊杰出的数学著作。他用平面截圆锥体而得到各种二次曲线,椭圆、抛物线、双曲线是由他命名的。
也是同一时代的阿基米德(Archimedes,约公元前287-前212)研究出了求球面积和体积、弓形面积以及抛物线、螺线所围面积的方法。他用穷竭法解决了许多难题,还用圆锥曲线的方法解了一元二次方程。